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1 Introduction 
Morphogenesis is the creation of a complicated shape out of a simpler one by 
chemical processes in living organisms. To the physical scientist, the essence of it 
is symmetry-breaking. Yet the precept that ‘asymmetry begets asymmetry’ is not 
necessarily violated. Natural disturbances, which are continually present every- 
where, contain adequate asymmetry to serve as antecedent for any shape, 
however complex. But how do living organisms go about making a rather precise 
selection of what parts of the available asymmetry to amplify? We know that the 
specification for the development of an organism is written in the genetic code. 
For some thirty years, the most rapidly advancing divisions of biological science 
have been those dealing with DNA, RNA, and proteins. The powerful theories 
here have been those of molecular geometry, statically perceived in terms of 
building block or jigsaw puzzle fitting together of parts. 

Genetic information does not, however, specify how much of a protein is to be 
produced at any time, nor where it is to go. No-one today believes that the 
nucleus contains a reduced spatial map from which the organism is built, as a 
building is constructed from an architect’s plans, or as a human sperm was once 
believed from vague microscopical resemblance to contain a ‘homunculus’. There 
is a wide gap in understanding between macromolecular geometry and the large- 
scale shape of the whole organism, and this gap is not being closed very quickly. 
This review is intended, therefore, to show physical chemists a field in which 
experiment and theory are rather far apart, and in which they might be able to 
make sof-ne contribution towards bringing them closer together. 

All physical chemistry is divided into three parts: structure, equilibrium, and 
kinetics. In approaching a set of phenomena for which there are no definitely 
proved or generally accepted explanations, the physical chemist must ask himself 
in which of these fields the answers are likely to lie. Two accounts with almost 
identical titles have no overlap whatever in outlook. These are a paper written in 
1952 by Turing,’ entitled ‘The Chemical Basis of Morphogenesis’, and a chapter 
of Lehninger’s ‘Biochemistry’,2 entitled ‘The Molecular Basis of Morphogenesis’. 
The former expounds a model, in terms of rate equations for reaction and 
diffusion, showing how spatially inhomogeneous arrangements of material might 
be established and maintained kinetically in a system in which the equilibrium 
state is a homogeneous uniform distribution. This type of theory has later been 

A. M .  Turing, Philos. Trans. R .  SOC. London, Ser. B, 1952, 237, 37. 
A. L. Lelminger, ‘Biochemistry’, (2nd Edn.), Worth Publishers, 1975, chap. 36. 
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extensively elaborated in the theory of ‘dissipative structures’ of Prigogine and 
his co l iab~ra tors ,~-~  and more specifically tied to biological examples in the work 
of Gierer and Meinhardt.‘-+B 

The structural approach2 is based on precise evidence for the geometry of 
assemblies of quite large numbers of protein molecules in viruses,299 micro- 
tubules,lO and microfilaments.ll Its successes stop short of the cellular level. 
Studies of microstructure with the aid of optical and electron microscopes are, 
however, providing increasing evidence that microtubules and microfilaments are 
often present at places and times of morphogenetic significance, especially at the 
onset of cell division in both plants (‘pre-prophase band’ of microtubulesl2) and 
animals (contractile ring of microfilamentsl3). Many biologists expect that the 
‘cytoskeleton’ of these structural proteins will prove to be the geometrical link 
between the molecular and the macroscopic scale. 

Living organisms are never at equilibrium, and are probably farthest away 
from it when undergoing morphogenesis. Nevertheless, there may be cases in 
which the appearance of disparate parts is to be accounted for principally in 
terms of a drive towards minimum free energy, rather than in terms of geo- 
metrical fitting, or imbalances in rates of reaction and transport processes. There is 
then some correspondence between the process concerned and phase transitions. 
In respect of some particular kinds of interaction, the ‘equilibrium’ state is 
heterogeneous. Classical theories of phase nucleation, critical supersaturation, 
critical micelle concentration, and spinodal decomposition have been used in 
discussion of pattern formation.14,15 The behaviour of mixtures of cells sometimes 
mimics molecular mixtures in ways that suggest a concept of cell-as-molecule. 
Such mixtures frequently ‘sort out’ into two separate aggregates, each of a single 
type of cell. SteinberglG showed that this phenomenon could be explained in some 
detail by differential adhesions between cells. This leads to an analogue of 
surface tension, measurable by the sessile drop method,17 for an assembly of 

I.  Prigogine, in ‘Fast Reactions and Primary Processes in Chemical Kinetics’, 5th Nobel 
Symposium, ed. S. Claesson, Interscience, New York, 1967, p. 371. 
P. Glansdorff and I .  Prigogine, ‘Thermodynamics of Structure, Stability, and Fluctuations’, 
Wiley-Interscience, New York, 1971. 
G. Nicolis and I .  Prigogine, ‘Self-Organization in Non-equilibrium Systems’, Wiley, New 
York, 1977. 
A. Gierer and H. Meinhardt, Kybernetik, 1972, 12, 30. 
H. Meinhardt, J .  Cell Sci., 1977, 23, 117. 

* A. Gierer, Prog. Biophys. Mol. Biol., 1981, 37, 1 .  
s A .  Klug, Fed. Proc., Fed. Am. SOC. Exp. Bioi., 1972, 31, 40. 

l o  ‘Microtubules’, ed. K.  Roberts and J .  S. Hyams, Academic Press, 1979. 
l 1  ‘Cell Motility: Molecules and Organization’, ed. S. Hatano, H. Ishikawa, and H. Sato, 

l 2  J .  D. Pickett-Heaps and D. H. Northcote, J .  Cell Sci., 1966, 1, 109. 
l3 R. Rappaport, Znt. Rev. Cytol., 1971, 31, 169; T. Schroeder, Z .  Zellforsch., 1970, 109,431, 

J .  Cell Biol., 1972, 53, 419, Proc. Natl. Acad. Sci. USA, 1973,70, 1688; R. E. Kane, ref. 1 I ,  
p. 639. 

University Park Press, Baltimore, 1979. 

l4 T. C. Lacalli and L. G. Harrison, J .  Theor. Biol., 1978, 74, 109. 
l5 J .  W. Cahn, Acta Metallurg., 1961, 9, 795; J .  Chem. Phys., 1965, 42, 93. 
l a  M. S. Steinberg, J .  Exp. Zool., 1970, 173, 395. 
l 7  H. M. Phillips and M .  S. Steinberg, Proc. Natl. Acad. Sci. U S A ,  1969, 64, 121. 

492 



Harrison 

cells, and is in general closely analogous to classical concepts of solution thermo- 
dynamics and immiscibility. 

The term ‘self-assembly’ has commonly specified the structural approach, but 
is nowadays being extended to include sorting-out by differential adhesion. The 
dangerously similar term ‘self-organization’ is used by Prigogines for the kinetic 
approach. It is perhaps least confusing to avoid these terms, unless one uses them 
to cover the whole topic, regardless of mechanism. 

In the 1930’s, a term ‘morphogenetic substance’ was current, and it later 
became clear18 that what was then envisaged is now known as messenger RNA, 
and that it does not solve the problems of morphogenesis. From the 1950’s 
onwards, the term ‘morphogen’ has been used, sometimes rather vaguely. Its 
most specific meaning is to specify either of two substances, an ‘activator’ and an 
‘inhibitor’, commonly designated X and Y, which appear in Turing’s modell and 
most later versions of reaction-diffusion. Candidates for the style and title of 
morphogen range from ammonia via cyclic adenosine monophosphate (CAMP) 
to some rather large proteins and glycoproteins. In non-living chemical systems, 
cerium-catalysed oxidation of malonate by bromate (Belousov-Zhabotinski 
reaction) shows time and space periodicities, for which the analogues of three 
morphogens ‘X, Y, and Z’ are probably BrOz-, Ce4+, and Br-.5J9-21 No substance 
is yet definitely established as a morphogen in a living system. 

2 The Kinetic Approach : Reaction-diffusion 
A. Symmetry-breaking : Optical Resolution as an Example.-Reaction diffusion 
mechanisms for morphogenesis, when expressed as rate equations, commonly 
contain simple autocatalytic terms [equation (l)] where X represents a displace- 

axiat = k x  (1) 

ment from equilibrium and may therefore assume both positive and negative 
values. Hypothetical chemical mechanisms, such as Prigogine’s ‘Brusselator’3-5 
commonly show a bimolecular autocatalytic step [equation (2)], assumed to 

2x + Y = 3x 
have orders corresponding to molecularities. The essence of this concept of auto- 
catalysis was first mentioned, and is most simply illustrated, in regard to a 
diffeient but closely related problem, the origin of optical activity in nature, e.g.  
why living material contains, in general, only L-amino-acids and D-sugars. 

Mills,22 in a presidential address on inorganic stereochemistry to a regional 
meeting of the British Association in 1932, pointed out that, if a reaction in which 
a prochiral reactant A yields a chiral product D or L is autocatalysed bimole- 
cularly and stereospecifically [equation (3)], then the racemic state is unstable. 

J .  Brachet, preface to S. Puiseux-Dao, ‘Acetabularia and Cell Biology’, trans]. P. Malpoix- 
Higgins, Springer-Verlag, New York Inc., 1970. 
A. M. Zhabotinski, Biojzika, 1964, 9, 306. 

(2) 

2o A. T. Winfree, Science, 1972, 175, 634; Sci. Am., 1974, 230, 82. 
21 R. J .  Field and R. M. Noyes, Furaday Symp. Chem. SOC., 1974,9,21; J. D. Murray, J .  Theor. 

%* W. H. Mills, Chem. Znd. (London), 1932, 750. 
Biol., 1976,56, 329. 
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2D 2L 
A - t D a n d A - t L ,  (3) 

If, for example, the D: L ratio is at any time 2:1, the rates of formation of D and 
L (with order as expected from molecularity) are in the ratio 4: 1 and the system 
is moving closer to resolution as D. Mills showed that fluctuations could be 
expected to be present in adequate amount to start a system on the road to 
resolution. Mills’ concept has been rediscovered or elaborated several times.23-27 
At least two a c c o u n t ~ ~ ~ ? ~ ~  indicated that an intermediate stage should be an 
assemblage of separate territories, each occupied by pure D or pure L. This is a 
rudimentary morphology, but an unstable one, in that large areas will ultimately 
surround and destroy smaller ones. 

If we now use X to represent the measure of asymmetry [equation (4)], and not 

the concentration of a single substance [as one might do in relation to equation 
(2)], the rate of growth of asymmetry is: 

X = D - L  (4) 

aX/at = kfAD2 - kfAL2 = kiA(D - L)(D + L) = krA(D + L)X ( 5 )  

There are many circumstances, especially when X is small, in which the total 
product (D + L) is likely to be varying much more slowly than the asymmetry X. 
Equation ( 5 )  is then, approximately, equivalent to equation (1); bimolecular auto- 
catalysis gives first-order exponential growth of asymmetry. The effective rate 
parameter is, however, a pseudo rate-constant, containing both the total reactant 
concentration A and the total product concentration (D + L), both assumed to 
be held roughly constant by external supply and removal. 

Figure 1 shows a more complete model of this kind. Catalysis takes place by 
adsorption of D and L on to sites on a catalytic surface. Arrangement of D and L 
is random, site activation is bimolecular and stereospecific, there are sufficient 
concentrations of D and L in solution to maintain adsorption saturation, and 
adsorption-desorption is rapid. Autocatalysis of D product ion then depends on 
D and L through the ratio D/(D + L). 9 is diffusivity along a co-ordinate s. 

aDpt = krAD2/@ + L)2 - krD3/(D + L)2 - kextD + 93a2D/3as2 (6) 

The equation is similar for aL/at, with D and L interchanged throughout. This 
model introduces the reverse reaction on the catalyst, an important feature 
neglected in Mills’ original suggestion. Since this is a cubic term, it is capable of 
preventing the asymmetrising effect of the squared term for the forward reaction. 
The symmetry-breaking is, indeed, made possible only because the non-stereo- 
specific removal, giving the linear term kext D, opposes the effect of the cubic 
term. I showed2’ that, in a well-stirred system with the diffusion term omitted 
from equation (6), symmetry-breaking will occur from the racemic steady state 
only if: 

*3 F. C. Frank, Biochim. Biophys. A m ,  1953, 11, 459. 

=E. P. Decker, Nature (London), New Biol., 1973, 241, 72. 
a6 L. G. Harrison, J. Theor. Biol., 1973,39, 333. 
2 7  L. G. Harrison, J .  Mol. Evol., 1974,4, 99. 

F. F. Seelig, J.  Theor. Biol., 1971, 31, 355;  1971, 32, 93. 
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R 
I 

Figure I The simplest irreversible (dissipative) cycle for symmetry breaking by bimolecular 
aurocatalysis. When di8hsion is considered, the system is usu~lly envisaged as essentially 
one-dimensional, elongated along the direction s 

kext > kr/4 (7) 
If we put in the diffusion term, and examine what happens if a simple sinusoidal 

pattern of asymmetry is superimposed on the racemic steady state, then we find 

X = a(t)sin(2ns/A) (8) 
that for long wavelengths the amplitude u increases with time, while for short 
wavelengths it decreases. The threshold wavelength for growth is :28 

A0 = 2~9+/(kext - kr/4)* (9) 

This simple example illustrates many of the important general features of 

(a) A threshold rate of interference from the rest of the universe must be 
exceeded for symmetry-breaking to occur. The term kext is a measure of the 
rate of entropy increase, or dissipation of energy, in the surroundings, 
necessary to create and maintain a low-entropy ordered state in the sys- 
tem. Hence the Prigogine school use the term ‘dissipative structure’ for 
what I prefer to call ‘kinetically maintained structure’. 

( 6 )  Reaction-diffusion mechanisms can set up quantitative scales of distance. 
This is seen in the dimensionality of ( 9 / k ) * ,  where k is a first-order 

kinetic mechanisms for the generation of spatial pattern : 

L. G. Harrison, in ‘Origins of Optical Activity in Nature’, ed. D. C. Walker, Elsevier, 1979, 
chap. 10. 
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constant. This form is exemplified, for a threshold spacing, in equation (9). 
More complex expressions for ‘chemical wavelengths’, e.g. the Turing 
wavelength given in equation (18) below, are variations on the same theme. 
This quantitative aspect is a particular strength of the reaction-diffusion 
mechanism that is not easily matched in structural or equilibrium models. 

(c) Reaction-diffusion tends to amplify long-range order. For example, the 
simplest possible autocatalysis-diffusion rate equation is : 

If we put into this the sinusoidal disturbance (S), we find that X grows according 
to a simple exponential growth law: 

where 

Figure 2(a) shows how kg increases with wavelength. If we use the more com- 
plicated model of equation (6) ,  start from a small disturbance to the spatially 
uniform racemic steady state, and confine attention to the early stages of growth 
or decay of the disturbance, this is again exponential, and gives equation (13), 

which corresponds to  Figure 2(a) with a different value for the threshold. This 
monotonic increase explains the eventual dominance of one product over the 
other, as in spontaneous optical resolution. Formation of a stable pattern requires 
a different dependence, e.g.  as in Figure 2(b), in which some finite-wavelength 
disturbance grows fastest and hence is eventually selected by the system out of 
whatever nature happens to provide at all wavelengths. Turing’s model, des- 
cribed in Section 2B, is designed to produce this dependence of kg on wavelength. 

Spontaneous resolution has been discussed here as an analogy, which provides 
the quickest route to understanding some basic features of the kinetic approach 
to all kinds of symmetry breaking. Two questions more directly related to 
optical asymmetry immediately arise, however. First, since the kinetic dis- 
cussion shows the possibility, in a non-living chemical system, of spontaneous 
resolution in converting a prochiral substrate into a chiral product, without any 
preliminary doping of the catalyst with optically asymmetric material, has this 
ever been observed? In 1958, there was a claim29 that such spontaneous reso- 
lution had been found in the reduction of a-ketoglutaric acid and its oxime to 
a-hydroxyglutaric acid and glutamic acid by hydrogenation on Raney nickel 
[equation (14)]. 

BPT. Isoda, A. Ichikawa, and T. Shimamoto, Rikagaku Kenkyusho Hokoku ( J .  Inst. Phys. 
Chem. Res., Tokyo),  1958,34,134 (In Japanese; translation by Y. Koga available from L. G .  
Harrison). 
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AUTOCATALYSIS 

x . -  

\ 

A 0  

TURING 

Figure 2 Exponential growth rate constants for pattern (i.e. non-uniform concentration 
distribution) sinusoidal in position s: (a) for simple autocatafysis and difision of one 
substance, equation (1 0); more rapid amplification of longer wavelengths; (h) for Turing’s 
two-morphogen model, showing most rapid amplification at A,. For (a) ,  A, = 2n(/gk)B 
(Reproduced by permission from ref. 28) 

Ni, H, 
H O 2 C v O 2 H  + H O 2 C W C O 2 H  (14) 

NOH H NH2 

I have tried to repeat this (unpublished; McGinnis, thesis30) and obtained 
equivocal data on resolution but definite indications of autocatalysis. This topic 
deserves further study on modern catalysts more sensitive to asymmetrising 
influences. 

Second, the question arises of just how close any symmetry-breaking in 
living systems may be to this model. It is well known that small chiral molecules 
are usually found in only one enantiomeric form in living organisms, and that this 
asymmetry carries through to their assembly into structures as large as proteins, 
including the assembly of several protein subunits into a polymer. I have pointed 
out, however, that on the large scale both enantiomers are present in structures as 
obvious as our right and left hands, and I have made a ‘wild surmise’ that the 
smallest spatial scale at which right- and left-handed structures appear might be 
an important scale to consider, and might be not far above the scale of organi- 
sation of a few protein subunits into a p0lymer.2~J~ 

B. Turing’s Equations.-Turing’s proposal1 was principally in the form of linear 

30 M. J. McGinnis, M.Sc. thesis, University of British Columbia, 1977. 
31 L. G, Harrison and T. C. Lacalli, Proc. R .  SOC. London, Srr. B 1978, 202, 361. 
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differential rate equations involving two measures of displacement from equi- 
librium, X and Y. These are, for diffusion in one spatial dimension s: 

These equations, being linear, can be solved exactly in analytical form. The 
solutions are summations of real or complex exponentials in the time and distance 
variables. For them to represent morphogenetic behaviour, there are various 
restrictions on the values of the four rate constants and two diffusivities. The 
essence of the mode of operation of the Turing model has been described 
qualitatively by Ma~nard-Smi th .~~ We suppose kl and k3 to be positive, /c2 to be 
negative, and ks to be zero; also 9 s  > 9 ~ ;  i.e. X catalyses its own growth and 
that of Y, Y inhibits X, and the inhibitor diffuses faster than the activator (X). 
This implies that, from a localised centre of activity, Y will, at least in early stages 
of development, spread out further than X. The useful slogan ‘short-range 
activatian; long-range inhibition’ is therefore often used to characterise mech- 
anisms of the Turing type. But, in the full operation of a Turing model to give a 
precisely ordered pattern, both X and Y are periodically distributed over the 
whole region concerned. 

In Maynard-Smith’s illustration (Figure 3), we suppose that the system, an 
elongated one along one spatial dimension s, is initially at equilibrium through- 

a 

Figure 3 Qualitative picture of how the Turing model leads to X and Y waves in phase, 
redrawn following Maynard-Smith’s i l l~strat ion~~ (schematic on fy; nor computed). See text 
for explanation 

J.  Maynard-Smith, ‘Mathematical Ideas in Biology’, Cambridge University Press, 1968. 
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out with respect to both X and Y. Somewhere, a small and fairly localised 
positive X-disturbance is introduced [Figure 3(a)]. It grows (kl catalysis) and 
spreads ( 9 ~  diffusion), but a positive Y displacement grows within the X dis- 
placement and spreads faster (k3 and BY terms) [Figure 3(b)]. Where Y has 
spread beyond the effective boundaries of the X peak, its inhibitory effect (k2 
term) produces X troughs [Figure 3(c)]. In these regions of negative X ,  the k3 
term becomes an inhibition of Y, i.e. where X has been 'pushed down' it can 'pull 
Y down after it' [Figure 3(d)]. The implication is that X and Y are on the way to 
settling down into wavelike patterns in phase with each other. In this model, we 
do not find an activator at one end of the system and an inhibitor at the other; 
X and Y have their maxima and minima together. 

A convenient abbreviation of the mathematical treatment of Turing's equa- 
tion@ may be obtained by going directly to the apparent final state in Maynard- 
Smith's illustration, and taking initial X and Y disturbances to be sinusoidal in s, 
and exactly in phase or 180" out of phase, so that 8 = Y / X  is everywhere the 
same and depends only on time, 8 = 8(t). Insertion of such disturbances into 
equations (15) confirms the possibility of this type of solution by yielding an 
ordinary differential equation for the evolution of 8 with time. Eventually, the X 
and Y waves will settle down to a constant ratio of amplitudes, and will grow or 
decay together in simple exponential fashion with a rate constant kg. How kB 
varies with wavelength depends on the values of the kinetic and diffusion 
parameters. A typical plot in the region of morphogenetic significance is shown 
in Figure 2(b). A maximum for kg occurs at a finite wavelength; given sufficient 
time, and sufficient concentration range available for exponential growth of both 
X and Y on both sides of equilibrium, a pattern of this wavelength will finally 
dominate the system. 

The growth rate constant (doubled, for convenience) is given by: 

2kg = kl + k4 - (2n/A)'(9x + 9 ~ )  + (b' + 4kzkS)f (1 4) 
where 

b = k4 - k ,  - (2n /A ) ' (9~  - Bx) (1 7) 
The maximum of kg is at:  

Am = 2 4 9 ~  - B ~ ) ~ / [ k 4  - k ,  + (BY + 9 ~ ) ( - k a k s / 9 ~ 9 ~ ) ' ] *  (18) 

which is dimensionally of the form (9/k)* and in fact reduces for reasonable 
values of the parameters to 27r[gx9~/( - kzk~)]*. Since k2k3 is negative in the 
region of interest, k, may be complex, indicating time-oscillatory behaviour. 
When kg is real and positive, spatial pattern can be established without any time- 
oscillatory behaviour. For fairly wide ranges of the kinetic constants and 
diffusivities, kg varies with h as shown in Figure 2(b); kg is real at all finite 
positive wavelengths, and passes through a maximum. For the maximum to be 
sharp, with kg going negative at long wavelengths, kl and k4 must be chosen 
within a rather restricted range, and the latter must be negative (Y self-inhibitory). 

T. C. Lacalli and L. G .  Harrison, J .  Thror. Biol., 1978, 70, 273. 
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All the required conditions were given by Turing,l very briefly and without 
indication of derivation. Lacalli and 1 3 3 9 3 4  gave simple derivations of these, and 
showed how the conditions could be plotted on a diagram of kl and kq. 

Turing’s model has the obvious defect of unrestricted exponential growth, 
which must always become unrealistic after some finite time, because concen- 
trations grow to exceed any possible value or, in the other direction, become 
negative. More realistic models give non-linear differential equations, often 
corresponding to practical limitations on concentrations, such as saturation 
effects. The strength of the Turing model is that, for the initial development of 
pattern out of uniformity, the mathematical process of linearisation casts most of 
these non-linear models back into the Turing form.34 The Turing model therefore 
shows how pattern should start to grow out of uniformity for most reaction- 
diffusion mechanisms; but it does not give a full account of how the pattern may 
change as it develops, because of non-linearities. 

Mathematical analysis of reaction-diffusion has so far been carried out mainly 
for fixed boundary conditions. Biological development is concerned largely with 
moving boundaries, because organisms grow. Experiments in this field often also 
involve changes in boundaries, e.g. when one chops an organism into pieces and 
watches what happens next. The term ‘regulation’ is used to describe the ability of 
an organism to maintain or re-establish pattern in the face of such natural or 
artificial changes in boundaries. Turing’s model has been criticised35736 for lack of 
regulatory capacity. A major objection has been that the Turing model requires a 
precise fit between some multiple or half-multiple of the ‘chemical wavelength’ 
corresponding to maximum k g  and the size of the system. The former is fixed by 
the dynamic constants of the mechanism; the latter is continually changing. This 
type of objection is invalid, for two reasons. First, even if the fit of wavelength to 
system size is inexact, a pattern can develop, and one particular pattern may arise 
for quite a wide range of system size. Figure 4 shows a computation of the 
development of a half-wave of X and Y along an elongated system. The cal- 
culations were carried out for possible relevance to the morphogenesis of slime 
moulds (Plate 4). Computation of the effect of cutting the specimen into two 
unequal pieces showed re-establishment of the pattern in both pieces. Amplitudes 
are, however, shown normalised in the diagrams. In this, as in all calculations on 
the linear equations, there is a great increase in amplitude as time goes by, and it 
is a valid objection that regulation usually takes enough time that the system 
must have moved into a region of concentrations in which one should be using 
more realistic non-linear models. 

Second, as mentioned above in relation to equation (3, autocatalytic rate 
parameters may often turn out to be pseudo rate-constants, containing concealed 
concentrations that happen to be, in practice, constant, if one looks beyond the 
rate equations to the possible chemical mechanisms giving rise to them. In the 

34 T. C. Lacalli and L. G. Harrison, J .  Theor. Biol., 1979, 76, 419. 
35 J. Bard and I.  Lauder, J. Theor. Biol., 1974, 45, 501. 
3 e  C. H. Waddington, ‘Principles of Embryology’, George Allen and Unwin, London, 1956, 
pp. 422-423.  
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Figure 4 Computation of restoration of pattern in both parts of an elongated system cut 
into two unequal pieces, on the basis of the Turing model, for comparison with what happens 
in slime moulds (Plate 4). Amplitudes are shown normalized; there is a very large increase 
as time goes on 

case of equation (3, if the total reaction product is P = D + L, the auto- 
catalytic rate constant is kfAP; for the adsorption saturation model on a hetero- 
geneous catalyst [equation (6) ] ,  the corresponding expression is kfA/P. If this type 
of expression is used for the constant k in equations (10) and (12), the threshold 
wavelength for growth of a disturbance is: 

A, = 2n(gP/krA)+ (19) 

and is thus controlled by the reactant/product ratio A/P, which depends upon 
supply and removal and can certainly change as a system grows. It is, for example, 
quite easy to envisage  circumstance^^^ in which reactant is supplied to the bulk of 
a system across its boundaries and used up in such a way that its steady-state 
concentration falls as the system grows. Equation (19) then shows ho increasing 
as the system grows. I have shown3l that the same kind of argument can be made 
for the ‘chemical wavelength’ Am, and that this can in fact grow in proportion to 
the size of the system, so that a pattern can be stable for indefinite increase in size. 
The important point here seems to be that the reaction scheme should have two 
sequences in parallel starting from the same reactant A, with the ‘morphogen 
variable’ X or Y being a measure of imbalance between the concentrations 
produced along the two branches, e.g. equation (20). 

3 7  L. G .  Harrison, in ‘Developmental Order: Its Origin and Regulation’, 40th Annual Sym- 
posium Society Developmental Biology, ed. S. Subtelny, Alan R.  Liss Inc., 1981 (in press). 
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where the products PI and PZ and the parameters of rate processes leading to 
them need not be symmetrically related as closely as enantiomers. 

The model as so far described shows how non-uniform concentration dis- 
tributions in space could arise for two hypothetical substances X and Y, or for 
some greater number of substances PI, Pz, etc., with the symbols X and Y serving 
for quantitative measures of imbalance. The question remains of how X and Y 
are supposed to influence morphogenesis. In single-celled plants, which have 
rigid cell walls and are capable of converting differential reaction rates into a 
complicated shape (Plates 2 and 3), it is reasonable to envisage X or Y as a 
catalyst for growth processes at the cell surface. Embryology of multicellular 
animals is discussed very differently, in terms of a variety of levels of gene 
expression achieved by something analogous to the throwing of switches to turn 
on or off the activity of particular genes in certain individual cells or groups of 
cells. Ka~ffman~~-*O has suggested, first, that the notation 1 or 0 could be used to 
indicate on or off for each switch, leading to a ‘binary epigenetic code’ in which, 
for example, the notation 0100 on a region of an embryo would mean that of four 
genes A, B, C, D, only B is switched on in that region. Second, he suggested that 
the function of a chemical morphogen is to throw a switch, e.g. positive X turns 
A on while negative X turns A off. Third, he proposed that when a morphogen 
system goes through a succession of patterns as a system grows, each pattern can 
serve to switch on or off a new gene in some definite sequence, and that each 
switching is permanent. If we consider, for instance, two-dimensional Turing 
patterns on a growing ellipse, with the rate parameters truly constant so that 
increasingly complex patterns are favoured as the ellipse becomes larger, the 
expected succession of patterns has nodal lines and positive and negative regions 
as shown in Figure 5.  Kauffman envisaged each 

011 111 

010 110 @ 000 001 100 101 

pattern as switching one gene in 

@@ 4 4 

Figure 5 Nodal lines of successive Turing waves on a growing ellbse (size shown nor- 
malized). At each stage,positive X switches aparticulargene on ( 1 )  and negative X switches 
ifoH(0). The resulting binary epigenetic code is shown for the first three stages. Nodes 1 and 
2 may appear to have been established in the wrong order: for a full account, see Kauy- 
man,3e*40 This model is hypothetical 

S. A. Kauffman, Science, 1973, 181, 310; ‘Cell Patterning’, CIBA Foundation Symposia, 
new series, no. 29, Elsvier, Amsterdam, 1975, p. 201. 

39 S. A. Kauffman, Am. Zool., 1977, 17, 631. 
l o S .  A. Kauffman, R .  Shyrnko, and K. Trabert, Science, 1978, 199, 259. 
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Plates 1-10 Some examples o f morphogenesis 

Plate 1 Pores in the cellulosic cell wall of a single-celled alga, Cosmarium botrytis. The 
array of pores is not quite regular, but far from random. Nucleution-depletion model, 
section 3A and Figures 8 to 10 
(Reproduced by permission from ref. 14) 
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Plate 2 Semicell morphogenesis in a single-celled alga, Micrasterias rotata. The cell has 
the shape of a biconvex lens, almost split in half (arrows) and with the semicircular margin 
of each half deeply indented. In vegetative reproduction, the cell splits at the isthmus 
between the two halves. A ‘bubble’ of cell wall grows out from each half, and develops a 
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wavy outline, the lobes of which repeatedly square ofland bifurcate in a manner suggesting 
the presence of non-linear concentration waves, sections 2B and C .  Fully-grown, diameter - 200pm. Numbers are hours ufter cell division 
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Plate 3 Growing t@ of a giant single-celled alga, Acetabularia mediterranea. The cell 
grows, by action mainly at rounded tip T ,  into a cylinder perhaps 4cm long 400pm in 
diameter. Every few days, the tip flattens and forms a ring of hair initials I from which a 
whorl W of hairs grows (W marks previous whorl; another is just forming at I ) .  Reaction 
diffusion and Arrhenius-type temperature dependence of hair spacing at first appearance of 
initials, section 2D 
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f 2 
Plate 4 Multicellular morphogenesis without cell division or feeding: the cellular slime 
mould Dictyostelium discoideum. Thousands of independent amoebae, dividing and feeding 
on decaying vegetation, aggregate into an elongated (- 1 mm) assembly (a to b to c) and 
differentiate into ‘pre-spore’ and ‘pre-stalk’ cells (c or e ) ,  which rearrange into the stalk and 
mass of spores of the fruiting stage d. Treatment of the differentiation by reaction-diflusion, 
section 2B. Restoration of pattern after cutting (e to f and g), computation shown in 
Figure 4 

/ 
Plate 5 Schematic representation of ‘engulfment’ and ‘sorting out’ experiments on two 
types of living cells from an animal embryo. Cells as analogues of immiscible molecules 
and differential adhesion, sections 3B and 4A 
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a 

b 

Plate 6 Gastrulation: (a)  Schematic cross-section through a hollow sphere of one layer of 
cells, showing shape changes and cell movements by which the gut starts to form. Given in 
many textbooks as typical of processes in the vertebrates, actually seen in a form close to 
the idealised diagram only in Amphioxus and echinoderms. 
(Reproduced by permission of McGraw-Hill Book Co. from Gilchrist, A Survey of 
Embryology j 
(bj In nematode worms, two cells differentiate and move inward in a manner like the sorting 
out in Plate 5 .  From these cells, the gut starts to form. Turing regarded (a)  as symmetry 
breaking from a sphere to be explained by reaction-diffkion 

.... :E' Division ... 

bi - 
polarity.' A. B. C. 

Plate 7 Initiation of branches or leaves from aplant stem depends on changes in direction of 
celldivision. A two layers of cells lying along the stem. B, C: Growth of d branch upwards 
needs all three possible directions of cell division, here called E, H, and T because line of 
division completes the shape of one of those letters on top or front of diagram of cell. 
(Reproduced by permission from ref. 68) 
Reaction-diflusion control may lie in tubidin precursors, section 4C 
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Plate 8 Hydra is about 1 mm long and has about lo6 cells of about 15 di’erent types. H: 
hypostome; 1 ,  2, 3,  4: gastric segments; B :  budding area; P :  peduncle; D :  basal disc. 
Grafting experiments using pieces from two specimens show that a grafr of 1 to 1234 does 
not grow an extra ring of tentacles, but a graft of 12 to 1234 does form ientac~es at the 
graft G. Gierer-Meinhardt reaction-diffusion theory, section 2C, accounts for this by 
producing a large activator peak out of the discontinuity in source gradient p. a ; activator; 
h: inhibitor 
(Parts of diagram reproduced by permission from refs. 47 and 6) 
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i t  ransplant 

Plate 9 The stump of an amputated left leg of a cockroach hasgraftedon to itan amputated 
right leg, rotated through 180". The parts fuse, andat the next moult, two supernumerary 
limbs, both left, grow from the graft. Clockface gradient which may need either reaction 
diflusion or diflerential adhesion of both to eAplain it, Figure 6 
(Reproduced b y  permission from ref. 57) 

Plate 10 Four stages in growth of vertebrate limb (chick wing) front a limb bud, showing 
early origin of several regions within which parts of skeletal structure form by diflerentiation 
of cartilage cells (black in last stage shown). In some amphibia (newts), limb graft behaviour 
closely parallels that in insects, Plate 9. Positive feedback in cartilage formation and 
glycosaminoglycans, section 4B 
(Reproduced in modified form by permission from ref. 57) 
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a manner which is not cancelled by the next pattern, leading to an increasingly 
complicated compartmentalisation of the region. He related this to experi- 
mental observations on insect development, first to the formation of some 
boundaries known as ‘clone restriction lines’ in the development of an insect 
wing, and second to the origin of segmentation at an early stage of embryonic 
development. 

These examples serve to indicate that, if the hypothetical morphogens exist at 
all, they are likely to be very diverse both in respect of chemical nature and in 
respect of the location of their morphogenetic activity. For the single-celled 
plants, this activity must be near to the cell surface and concerned with either 
addition of lipids to the cell membrane or addition of cellulose to the wall. For 
multicellular animals, they may be concerned with nuclear DNA and inhibitors of 
gene expression attached to it at specific points. 

C. Hypothetical Reaction Mechanisms and Non-linear Models.-Great diversity 
is possible in chemical reaction mechanisms that yield systems of non-linear rate 
equations equivalent, upon linearisation around equilibrium, to the Turing 
equations. Only a few schemes have been studied extensively by mathematical 
analysis and ~ o m p u t a t i o n . 5 ~ 6 J ~ ~ ~ O ~ ~ ~  From these, however, it is already evident 
that different models have quite different characteristics in the regions of non- 
linear behaviour. 

The Prigogine ‘Brusselator’ model is the reaction : 

A + B + D + E  (21) 

proceeding with the aid of morphogen intermediates X and Y according to: 

A + X  (22d 

B + X + Y + D  Wb)  

(22c) 
X + E  (22d) 

2x + Y + 3x 

Mathematical analysis has been mainly for time-independent A, B, D, and E, as 
fixed by supply and removal, and diffusible X and Y with, as in Turing’s model, 
9 y  > 9 x .  

The presence of two reactants, one of which converts into X while the other 
removes X, is an important feature of this model. As usual, there are threshold 
conditions for the development of kinetically maintained structure: A must 
exceed a threshold value, but B must be less than a threshold value. This makes it 
rather easy to devise models for control of A and B that would allow interesting 
things to happen over only part of a system, as quite commonly happens in 
morphogenesis. For instance, if B diffuses into a system from its boundaries, and 
is used up in an overall first-order decay [apart from its destruction in reaction 
(22b)], a steady state can arise in which B is higher at the boundary than at the 

*l J.  D. Murray, ‘Lectares on Nonlinear-differential-equation Models in Biology’, Clarendon 
Press, Oxford, 1977. 
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centre of the system. Morphogenetic action may then be ‘switched on’ only in 
some central region. This could be relevant, for example, to tip growth of some 
algae, fungal hyphae, and root hairs of higher plants, in which the growth action 
is concentrated in a roughly hemispherical tip of a cell, leaving behind it a 
cylinder which grows not at all or very slowly. Sometimes, more complicated 
patterns can form at the tip (Plate 3). 

Variants of the Brusselator scheme have been devised by Tyson and co- 
w0rkers,4~~~3 for example : 

Reactants + Y (23a) 

Y +x (23b) 
2 X + Y  +3x (234 

X +- Products (23d) 

For this class of models, computations show another important feature that is 
not shared by some other types of non-linear model (e.g. ,  the model of Gierer and 
Meinhardt discussed below). Morphogen peaks can rather easily arise, decay, and 
move around as pattern develops, in a manner somewhat reminiscent of Ostwald 
ripening of a precipitate, but of course with better spatial control and with the 
spatial heterogeneity sustained only by kinetic effects. L a ~ a l l i ~ ~  has shown by 
computations using the rate equations equivalent to equations (23), for a two- 
dimensional region with random input and no-flux boundaries, that a very 
irregular pattern of X peaks at first arises and gradually changes into a perfect 
hexagonal array. Not all models have the adaptability to find the kinetic route to 
this structure from an irregular one. 

Reaction schemes containing three intermediates X, Y, and Z are capable of 
generating both spatial pattern and time-oscillatory behaviour without the need 
for bimolecular autocatalysis in a single step. In some instances, the distinction is 
trivial, depending simply on the degree of approximation made in writing down 
the kinetic scheme. Consider, for example, the sequence: 

C + X + Y  (24d 
X + Y + Z  (24b) 
A + Z + X + Z  ( 2 W  

X + B  (244 

If the first two steps are fast, so that equilibrium is maintained in them at all 
times, they are merely a long-winded way of writing the addition of 2X to a 
catalytic site C to give an activated site CX2 which is Z. The first three steps are 
then equivalent to: 

A + 2X = 3X (25) 

A more complicated example of a three-intermediate system is the scheme of 

Ia J. J .  Tyson and J.  C. Light, J .  Chem. Phys., 1973, 59, 4164. 
43 J. J. Tyson and S. A. Kauffman, J .  Math. Biol., 1975, 1, 280. 

T. C. Lacalli, Philos. Trans. R.  SOC. London, Ser. B,  1981, 294, 547. 

512 



Harrison 

Field and Noyes2l for the Belousov-Zhabotinski reaction. This is the cerium- 
catalysed oxidation of malonate by bromate, overall : 

3CH2(C02H)2 + 4Br0,- --f 9C02 + 4Br- + 6H,O 

Spatial pattern and temporal oscillations are made visible in this reaction by 
adding an Fe2+/Fe3+ couple with an indicator such as ferroin, giving orange and 
blue colours. For a stirred solution, one sees oscillations, in which the colours 
alternate in time. For an unstirred system in a tall cylinder, stripes of alternating 
colour are seen moving vertically. In a Petri dish, concentric rings of alternating 
colour expand from several centres, and interact where they meet in a manner not 
characteristic of interference of It remains unclear whether this reaction 
is closely analogous to important phenomena in biological systems, or whether it 
is a chemical curiosity. Stationary spatial order is not a common feature of the 
reaction, except in flow systems.45 Some doubt has also been cast on the existence 
of diffusive coupling in the system. In a tall cylinder, the coloured stripes con- 
tinue to move uninterrupted when the cylinder of solution is cut by a horizontal 
Plexiglas ~ la te .~6  

The Field and Noyes scheme involves bromous acid, bromide, and cerium(rv) 
as the three intermediates. Out of an overall mechanism with many steps, the 
significant ones, with their X, Y, Z designations as used in the ‘Oregonator’ 
scheme, are probably: 

(26) 

BrO9- + Br- + 2H+ -+ HBr02 + HOBr 

HBrO, + Br- + H+ + 2HOBr 
A + Y  + X  

X + Y  + P  

BrO,- + HBr02 + 2Ce3+ + 3H+ -+ 2HBr0, + 2Ce4+ + H20 (27c) 

(27a 

X + B  + 2 x  + z 
2HBr0, -+ Br0,- + HOBr + H+ 

2X --f products Q 
4Ce4+ + BI-CH(CO~H)~ + HzO + HOBr -+ 2Br- + 4Ce3+ + 3C02 + 6H+ 
22 -+ 2Y (27e) 

In contrast to the rather changeable behaviour of this reaction, many biological 
systems show evidence for the existence of remarkably persistent gradients. 
Much of this evidence arises from cutting organisms and grafting so as to 
juxtapose pieces which nature would not have thought of putting together. 
(Plates 8, 9, Figure 6). The model of Gierer and MeinhardPs gives a good 
account of some of these situations, and has probably attracted more attention 
among experimental biologists than any other model of the reaction-diffusion 
type (this whole field of modelling being still regarded with much scepticism 
among biologists). The model envisages a gradient, fixed in time or changing only 
very slowly, of sources for the morphogens in an activator-inhibitor scheme. The 
latter is such that it tends to amplify small differences between regions, e.g. to 

O6 M. Marek and E. Svobodova. Biophys. Chem., 1975,3, 263. 
4 6  N. Kopell and L. N. Howard, Science, 1973, 180, 1171. 
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Figure 6 The clockface angular co-ordinate model of French, Bryant, and which 
generalises results of insect leg transplant experiments (Plate 9). Both reaction-diffusion and 
diferential adhesion are being used in attempts to account for this behaviour. Here, super- 
numerary limbs grow wherever there is a complete circle of values, 1 to 12, and clockwise 
speciJes left leg. Solid and broken lines are contours of positional information 

change a linear gradient into a curved one with a large peak at the high end, and 
to stabilise the result of this amplification fairly strongly against disturbing 
influences. Thus it contrasts markedly with the adaptability above-mentioned for 
the Brusselator, and is not a likely model for growing a two-dimensional hexa- 
gonal array out of chaotic input. The source gradient might be something on the 
multicellular scale of organisation, such as variation in the fractions of two types 
of cell in a tissue. Hydra has a greater proportion of nerve cells at the ‘head’ end, 
where the tentacles form, than at the base.47 

Gierer and Meinhardt actually proposed a number of related models, but the 
one they used most extensively uses two morphogens a and h (activator and 
inhibitor), corresponding roughly to Turing’s X and Y. The symbols a and h in 
the following equations will, however, signify complete concentrations, not 

* ?  P. Grant, ‘Biology of Developing Systems’, Holt, Rinehart, and Winston, 1978, p. 457; 
L. Wolpert, J .  Hicklin, and A. Hornbruch, Symp. Soc. Exp. B i d . ,  1971, XXV, 391. 
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deviations from equilibrium. As usual, g h  > ga. The parameters p and p’, both 
functions of distance s, represent the source gradients for a and h ;  PO, c, c’, p and 
v are rate constants. 

aaJat = pop + cpa2/h - pa + 9/a2a/as2 ( 2 W  
(28b) ahJat = c’p‘a2 - vh + Ona2h/W 

This model was first applied, with notable success, to the results of grafting 
experiments in Hydra (Plate 8 ) . 6 ~ 4 ~  More recently, it has been applied to insect 
morphogenesis. 

D. Temperature Sensitivity of Spacing in a Pattern.-If the spacing between 
repeated parts in a pattern is indeed to be regarded as a chemical wavelength of 
the form 27~(LB/k)+, it follows that spacing is a combination of chemical rate para- 
meters and should itself show the attributes of a rate parameter, among them its 
well known temperature dependence in the Arrhenius form. An activation energy 
of the order 10 kJ moIbl is likely for 9; that of k may be much more variable, but 
for processes occupying a time scale of a few hours something like 50 kJ mol-1 is 
the most likely value. The apparent activation energy of the spacing, from a plot 
of In h versus 1/T, should then be 

EA = (1/2)(E~ - E k ) -  (1/2)(10 - 50) = -20 kJ mol-l (29) 

In studies of the single-celled alga Acetabularia in my l a b ~ r a t o r y , ~ ~  spacings have 
been measured, as a function of temperature, between hairs in the whorls that are 
from time to time formed through a large part of the growth of the organism (one 
whorl every few days for some months; Plate 3). Figure 7 shows plots of this 
temperature dependence, which is just as expected from the above very general- 
ised argument. This good agreement is probably fortuitous. The simplest 
expression for a properly controlled spacing is 2 7 ~ [ 9 ~ 9 ~ / (  - kzk3)]* in which the 
diffusivity and rate constant have been replaced by geometric means of two such 
quantities, and uncertainties in the estimate of what EA should be increase with all 
such increases in complexity of the theoretical expression. Nevertheless, I hope 
that this example may serve to encourage further studies along these lines, which 
have the potential to give fairly clear indications of whether or not a reaction- 
diffusion mechanism is operating. 

3 The Equilibrium Approach : Phase Transitions and their Cell-as-molecule 
Analogues 

A. Inhibitory Fields.-Various scattered structures, both on the surface of a 
single cell (Plate 1) and in lines or sheets of cells, form arrays that are neither 
random nor fully ordered. Statistical analysis of the distribution of such struc- 
tures usually shows that they pack as if each structure were much larger than it 
appears to be, so that around each visible structure there is a region (a circle, in 

L. G .  Harrison, J.  Snell, R. Verdi, D. E. Vogt, G.  D. Zeiss, and B. R. Green, Protoplasma, 
1981, 106,211. 
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Figure 7 Spacing A between parts of a pattern (Acetabularia hairs, Plate 3) has an 
Arrhenius-type temperature dependence with a slope corresponding to an apparent acti- 
vation energy of - 20 kJ mol-1 
(Reproduced by permission from ref. 48) 

the two-dimensional cases) within which the formation of a similar structure is 
forbidden. This region is referred to as an ‘inhibitory field’. Attempts to account 
for the inhibitory field have usually invoked a diffusible substance, either an 
inhibitor moving out from the structure or, more simply, a substance needed for 
the structure moving towards it and consequently being depleted in the surround- 
ing region below some threshold for formation of similar structures. In such a 
‘depletion model’, the possible relevance of classical ideas of phase transitions is 
obvious, since we are concerned with nucleation of a structure above some 

516 



Harrison 

threshold concentration, which might be analogous to a critical supersaturation. 
Among the methods of statistical analysis used for partly ordered patterns, one 

of the simplest and most popular is the Clark and Evans R ~arameter.4~ For each 
pattern point in a two-dimensional array, the distance to its nearest neighbour is 
found. The average value of this distance is divided by p-*/2, where p is the area 
density of points. The result, R, is unity for a random array, 2 for a perfect square 
array, and 2.1491 for a perfect hexagonal array. It is striking that R values 
between 1.62 and 1.70 are found for structures as diverse as: hair follicles on 
Australian ~heep,~O cone cells in a monkey's retina,s1 and pores in the cell wall of 
a single-celled alga.l4 (See Figure 8 and Plate 1). C0mputation5~ for an inhibi- 
tory field of fixed radius around each pattern point yields R = 1.757. 

a R =  1.643 
0 .  0 . 1  

0 .  

b R=1-757 . 
0 . .  . *  . . . .  . . . .  . . . . 

. 
0 .  

* .  . . . . * . .  
!!" 
b 4  

2 

O O  
I 

2 4 6  
points 

Figure 8 Partly-ordered patterns: (a) Pores in the cell wall of a desmid (cf. Plate 1 ,  for a 
Fferent species but almost identical pattern); (b) computed pattern for an invisible 
inhibitory field' of$xed size around each pattern point. R is Clark and Evans' measure of 

order (see text); (c) for division of pattern into 16 smaller squares (4 x 4 grid), Poisson 
distribution of number of points in each square, i.e. random distribution; ( d )  actual distri- 
bution for pattern (a), showing that it is far from random 
(Reproduced by permission from ref. 14) 

There is a serious physiochemical problem in reconciling the concept of a fixed- 
radius field with the suggestions that the field is generated by inward or outward 
diffusion. One might expect such diffusion to be time dependent, with any 
particular concentration contour probably expanding in radius with t*. Lacalli 
and I1* computed patterns on this basis, and obtained very low order: R = 1.352. 

4 s  P. J. Clark and F. C. Evans, Ecology, 1954,54445. 
6 o J .  H. Claxton, J.  Theor. Biol., 1964, 7, 302. 
61 H. W a d e  and H. J. Riemann, Proc. R .  SOC. London, Ser. B,  1978,200,441. 
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A second difficulty concerns the nature of the critical concentration condition for 
nucleation of new pattern points. The computations just mentioned involve a 
constant rate of nucleation in all parts of the system not covered by inhibitory 
fields. In classical nucleation theory, the nucleation rate varies extremely rapidly 
with concentration above the critical supersaturation. We concluded that this 
model of the critical concentration would not work. 

Another type of critical concentration commonly found in solutions is the 
critical micelle c0ncentration.5~ Detergent solutions commonly contain mono- 
meric species A up to a concentration Cc at which a polymerisation of some 
fairly definite number m of species A to form micelles M occurs: 

m A  = M (30) 

The ideal chemical equilibrium equation for this process shows that, if rn is a 

3 

C 

2 

1 

0 

/ 
0 

/ 

1 2 3 

Figure 9 Ideal micelle equilibrium for 100 monomers per micelle. This is a type of ‘critical 
concentration’ efect in which the system is well controlled above rhe critical concentration, 
in contrast to critical supersaturation effects. A o ,  total concentration (as monomers); CMC, 
critical micelle concentration 
(Reproduced by permission from ref. 14) 

Ks L. R. Fisher and D. G .  Oakenfull, Chern. SOC. Rev., 1977, 6, 25. 
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large and constant number, if A is added to solution until Cc is reached, any 
further addition of A leads to micelle production while the monomer concentra- 
tion stays at Cc (Figure 9, for m = 100). This constancy of A concentration 
beyond the critical value at which micelles start to form is exactly what is needed 
to give uniform behaviour in the whole system outside the inhibitory fields. Our14 
model for cell wall pores is shown in Figure 10. As the cell grows to its full size, 
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Figure 10 The ‘micelle’ model for the boundary of an inhibitory field at a plant cell surface. 
N, nucleus of pore initial; mem, cell membrane (interior of cell is above); wall, primary 
cellulosic cell wall; mon, solution of monomers: mic, solution of micelles; C,, critical 
micelle concentration; M ,  monomer concentration; solid line is micelle concentration 
(Reproduced by permission from ref. 14) 

the cytoplasm is bounded, as usual, by a lipid bilayer membrane. Outside (below, 
in the diagram) there is a thin layer of solution bounded by the primary cellulosic 
cell wall. As the cell reaches full size, there is a period of some minutes before the 
thicker secondary cell wall forms between membrane and primary wall. In this 
short period, plugs of an unknown material (N) are laid down to form the ‘pore 
initials’, which later disappear to leave the pores in their place. We envisage the 
unknown material as being present in the solution layer as monomers A and 
micelles, or polymers, M, with fraction f of all the material (calculated as 
monomers) in the polymerised state. From time to time, a micelle may attach to 
the membrane and change into a state in which attachment of additional material 
takes place at an equilibrium concentration CI 4 Cc. N has a definite radius a 
( N 50nm) and additional material goes to thicken N downwards without increas- 
ing a. This diffusion of material towards N depletes the surrounding region 
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below Cc,  so that there are no micelles present up to some radius rc, of the order 
of 103nm but changing with time. By considering diffusion of both monomers 
and micelles, we were able to show that, if the micelle diffusivity is 9~ and that of 
monomers is roughly equal : 

r c  = a(3.02L@~f/a~)(’-f)/~ (31) 

[From equations (23) and (24) of our paper14 with the approximations indicated 
below those equations.] This model allows for rC to vary with time very much 
more slowly than t+, and hence is capable of accounting for the observed degree 
of order in the pore pattern. 

B. Sorting Out : Cells as Molecules.-In the embryonic development of animals, 
cells differentiate into a number of different types, and each type ends up occupy- 
ing a different spatial region to constitute the various tissues. (This description is 
oversimplified; a tissue may contain more than one cell type.) A major question, 
still incompletely resolved, is whether some chemical influence, e.g. a reaction- 
diffusion pattern of concentration, directs the cells in a particular region to 
differentiate in a particular way, or whether individual cells can differentiate any- 
where, followed by migration of like cells to the same region. It has long been 
known that, if two types of embryonic tissue are taken apart into separate cells, 
and the cells are intimately mixed, they tend to ‘sort out’ into two aggregates, 
each of one cell type. Steinberg16 studied this phenomenon in such a way as to 
place it on a basis comparable to the sorting out of two types of molecule in a 
pair of immiscible liquids. 

Steinberg took six tissues from chick embryos (A, B, C, D, E, F, respectively: 
back epidermis, pigmented epithelium of the eye, heart ventricle, liver, cores of 
limb cartilage, and neural tube) at early enough stages to ensure that each 
contained only one cell type. He showed that these tissues, taken in pairs, tended 
to arrange themselves as a sphere of one tissue entirely enclosing a sphere of the 
other, in a reproducible order (e.g. A always goes inside B). Essentially the same 
final configuration is reached in two types of experiment : ‘engulfment’, in which 
two pieces of tissue are skewered in adjacent positions on one skewer, and 
‘sorting-out’ as described in the preceding paragraph (Plate 5) .  This suggests that 
the final configuration is an equilibrium one. 

He showed that if two pair combinations yield A > B and B > C (where > 
means ‘goes inside’), the transitive property is present, i,e. the A/C experiment 
yields A > C .  From such study of all 15 possible pair combinations, it was 
possible to prove the existence of a hierarchy A > B > C > D > E > F. The 
chance of this occurring ‘by accident’ for a list of n items is r1!/2~(n-l)/2 = 6!/215 = 
0.022 for n = 6. Hence the existence of the hierarchy is established to about 98 % 
confidence. Such a series suggests the existence of a quantifiable property 
measuring position in the series. (As, for example, one might find a replacement 
series for metals in solution, and assert the existence of a quantifiable property, 
which is of course oxidation potential.) For the corresponding phenomenon in a 
series of immiscible liquids, this property would be surface tension. (A question 
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of relative volumes comes in here. If the two assemblies of cells have the same 
volume, the contact surface between A and B has the same area whether A goes 
inside B or the reverse. The interfacial tension YAB then makes the same contri- 
bution to the free energy of A-inside-B and B-inside-A, and cancels out of the free 
energy difference between those configurations. One need then think only of the 
relative surface tensions YA and YB between each aggregate and the medium in 
which they are suspended.) By placing a piece of each tissue on a flat plate, 
Steinberg” essentially carried out a ‘sessile drop’ surface tension determination 
He did not quantify the result, but showed simply that the final shape was flatter 
as the tissue lay lower in the hierarchy. 

This led to the concept of cohesive forces between adjacent cells, or ‘differential 
adhesion’ between cells of different types. Many kinds of model have been 
proposed for this. In the simplest (homophilic), a molecule attached to the 
exterior of one cell surface adheres to a like molecule on the surface of another 
cell. The same adhesive molecule might be present throughout the hierarchy, 
with the cell types differing only in the fraction of the surface covered by these 
molecules. Suppose that these fractions are a and b for cell types A and B. If the 
molecules are in fixed positions, the adhesive fraction of any contact area 
between two cells will be a2, b2, and ab for the contacts AA, BB, and AB. Thus, if 
the cells are all geometrically similar so that contact areas are the same for all 
pair combinations, the binding energy for AB is the geometric mean of those for 
AA and BB. This, curiously enough, is the same rule suggested by Berthelot in 
1898 for van der Waals forces in mixtures of fluids, and later justified in the theory 
of London dispersion forces, appro~imately.~3 

Quantitative aspects of adhesion between cells remain rather obscure. If cells, 
suspended in an aqueous medium, had bare lipid membranes, they would have 
actual van der Waals attractive forces at the contact of adjacent cells. The 
resulting binding energy has been estimated at 330 kTpm-2 of contact area. For 
contact area of only 10pm2, this gives a binding energy of 3300kT. Colloidal 
particles are considered to form stable aggregates if binding forces exceed about 
lOkT between particles. Thus cells with bare lipid surfaces should be bound 
together into very rigid masses; neither sorting out nor the suspension of cells in 
media such as the blood should be possible.54 Evidently the glycoprotein cell coat 
of animal cells must, among other functions, cancel out the membrane-to- 
membrane adhesions, leaving it possible for specific molecules to re-establish 
much smaller adhesions. To avoid the same problem of excessive adhesion, these 
specific interactions must be quite weak or quite sparsely distributed. This may be 
illustrated by considering the quantities involved in the immiscibility criterion for 
two types of cell. Two pieces of tissue, each about 1 mm3, would each contain of 
the order of N = 106 cells. If each cell is regarded as a ‘molecule’, the unmixing of 

m J. H .  Hildebrand and R. L. Scott, ‘Regular Solutions’, Prentice-Hall, 1962. 
64 D. E. Brooks, personal communication, using data from V. A. Parsegian and D. Gingell, 

J .  Adhesion, 1972, 4, 283; ‘Recent Advances in Adhesion’, ed. L.-H. Lee, Gordon and 
Breach, New York, 1972; D. Gingell and S. Vince, ‘Adhesion and Motility of Cells’, ed 
A. S .  G. Curtis, Cambridge University Press, 1979. 
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an intimate mixture of these cells into two separate aggregates involves an 
unfavourable entropy change : 

A S  = -2kNln2 = -1.4 x 106k 

Immiscibility therefore requires a favourable energy change for unmixing of the 
order of a million times kT for the whole assembly, or about kT per cell. More 
precisely, if a cell-cell contact leads to binding energy: 

W A A  = ckTd2; W B B  = ckTb2; WAB = ckTab 

then for 10pm2 contact, one adhesive molecule per nm2 at a = 1 (i.e. 1 0 7  as 
maximum number of molecule-to-molecule adhesions per contact), and adhesive 
energy of order kT (about 2.5 kJmol-l) between molecules, c = 1 0 7 .  For close 
packing of molecules (12 contacts) in both mixed and unmixed assemblies, the 
energy of unmixing would be: 

(32) 

( 3 3 )  

d E  = ~ N W A A  -/- 6 N W B B  - 3 N ( W A A  t WBB + 2wAB) = -3cNkT(a - b)’ (34) 
This, together with equation (31) indicates that separation is favoured for: 

la - bl > (21n2/3c)* = 2 x lo-* 

i.e. the discussion concerns parts in ten thousand of the surface covered with 
adhesive molecules. 

The above considerations are on the basis of a static picture of the cell as a 
rigid object. This is clearly incorrect, because Brownian motion of rigid objects of 
size of the order of lOpm would be much too slow to account for sorting out on a 
time scale of hours. The cell surface must be seen as continually changing in shape 
as a result of (i) molecular collisions, in the manner of Brownian motion, 
producing temporary small-scale deformations of the cell surface, and (ii) 
similar deformations being produced from inside the cell by, for example, the 
action of contractile microfilaments, which might still be random in relation to 
any directional effect on motion of the ce l l~ .~5  Such motions would of course 
tend to diminish the effective contact area between cells at any instant, so that 
much greater surface coverages of adhesive molecules would be needed to 
produce time-average interaction energies as discussed above. One way to 
express this kind of effect might be to use rigid-cell geometrical pictures, but 
introduce a fictitious temperature, much higher than the real temperature, to 
represent the enhanced random motion. Computer modelling of sorting out is an 
active field.56 

Some remarkable phenomena occur in insect and amphibian (newt) limb 
regeneration, especially in grafting experiments, indicating the existence of 
persistent gradients which can be represented by an angular co-ordinate around 
the limb and a linear co-ordinate along it (Plate 9, Figure 6).s7 These are un- 
55 M. S. Steinberg and L. L. Wiseman, J .  Cell Biol., 1972, 55, 606. 
56 R. Gordon, N. S. Goel, M. S. Steinberg, and L. L. Wiseman, ‘Mathematical Models for Cell 

Rearrangement’, ed. G. D. Mostow, Yale Univ. Press, 1975, p. 196; N. S. Goel and G .  
Rogers, J .  Theor. Biof., 1978, 71, 103 and 141 ; R. J .  Matela and R.  J .  Fletterick, J .  Theor. 
Biol., 1980,84673. 

(35) 

67 V. French, P. J. Bryant, and S. V. Bryant, Science, 1976, 192, 969. 
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explained, but there is definite evidence for gradients of adhesiveness of cells in 
animal embry0s.~8 

4 The Molecular Basis of Morphogenesis 
This review does not include a thorough presentation of the structural approach 
for two reasons. First, the review is intended to indicate the areas of specific 
physicochemical interest, and much structural information is of more purely 
biological or organochemical interest. Second, the balance of space allotted to 
different topics in this review reflects my bias on the extent to which the various 
types of concept are likely to turn out to be important in the crucial control steps 
in morphogenesis: kinetic > equilibrium > structural. The chemical reader 
should recognise that this is probably precisely the opposite order to that which 
the majority of experimental biologists would currently give. I have selected a few 
problems for brief discussion below, because I believe that they give a perspective 
on how structural aspects may fit in with the other matters discussed above. 

A. Heterophilic or Lock-and-key Adhesion.-Adhesion between two cells might 
involve bonding between two different molecules. This is often referred to as the 
lock-and-key model, probably with a geometry in mind similar to that of a sub- 
strate fitting into a suitably shaped infold of an enzyme; except that here the sub- 
strate will not be a free-moving small molecule, but probably held as terminal to 
some larger structure as the key is held in the hand. A cell with 100 %’ locks would 
bond best to a cell with 100% keys. This model has been used particularly in 
relation to some features of the assembly of the vertebrate nervous system, 
especially the joining of the optic nerve to the brain. In the lower vertebrates, the 
junction is made at the optic tectum, which can be thought of very roughly as a 
square of a million cells, 1.000 x 10oO. Each retinal axon seems to find precisely 
the correct cell to connect to, so that there is a specificity of about one part in 
1000 in each of two rectangular co-ordinate directions. Rival theories for how 
this happens are numerous and d i ~ e r s e , ~ ~ * ~ O  and include an activation-inhibition 
model (Willshaw and von der Malsburg) with interesting correspondences to the 
Turing model. RothGO has proposed a lock-and-key model in which there is a 
gradient from 100 % locks to 100 % keys across each direction on the tectum, and 
matching gr?dients across the array of axons advancing to meet the tectum. 
Accounts of this model have generally failed to point out, however, that, if the 
locks and keys are in fixed positions on the cell surface and cannot adjust to find 
each other, a cell with 50 % of each will join up equally well with an axon regard- 
less of the fractions of locks and keys on the latter. The model is not fully 
specified without a precise account of how far the locks and keys are able to 
migrate to find their partners, and the model doesn’t work without some limited 
mobility. 
58 M. S. Steinberg, in ref. 37. 
5 g  R. W. Sperry, ‘Organogenesis’, ed. R. L. DeHaan and H. Ursprung, Holt, Rinehart and 

Winston, 1965, p. 161; R. A. Hope, B. J.  Harnmond, and R. M .  Gaze, Proc. R .  Soc. 
London, Ser. B ,  1976, 194, 447; D. J .  Willshaw and C. von der Malsburg, Proc. R.  Soc. 
London, Ser. B,  1976. 194, 431 ; Piiilos. Trans. R .  Soc. London, Ser. B,  1979, 287, 203. 

s o R .  B. Marchase, A .  J .  Barbera, and S. Roth, in ‘Cell Patterning’, (CIBA Foundation 
Symposia, new series, no. 29), Elsevier, Amsterdam, 1975, p. 315. 
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Roth, in addition to proposing the model and finding some experimental 
evidence for an adhesive gradient (using tecta and retinal cells in vitro), has 
devised plausible biochemical models for the nature of the locks and keys. The 
animal cell coat, outside the lipid membrane, consists of glycoproteins, which are 
long polypeptide chains carrying a number of oligosaccharide side-chains, each 
having perhaps ten monosaccharide molecules in it. The side chains are 
built up with the aid of glycosyl transferase enzymes, which can attach to the end 
of the growing chain, wait for the next required sugar to come along, in the form 
of a sugar nucleotide, and attach it to the chain, at which stage the enzyme is 
released from attachment to the chain. Roth’s model is that the glycoprotein is 
attached to one cell, the enzyme to the other, and when the two have joined it 
happens that the next sugar substrate is absent and the enzyme is never released. 
This gives the lock-and-key junction. Roth devised various forms of this model, 
and among them pointed out that, if there were three types of side chain, each of 
which could exist in ten different stages of partial completion, 103 chemically 
different arrangements could arise from just a few monosaccharides, quite 
enough to account for a specificity of one part in 1000. To my mind, this sort of 
model is very useful but perhaps merely pushes the crucial question back one 
stage. The production of the required gradients of incomplete side chains would 
require some gradients of sugar substrates, and how do those gradients arise? I 
am led back towards reaction-diffusion. 

B. Positive Feedback on the Multicellular Scale.-The model of Gierer and 
Meinhardt described in Section 3C above used autocatalysis (positive feedback) 
on the molecular scale, with a fixed source gradient which might involve relative 
numbers of two types of cells. If any substance is found which is produced by a 
particular type of cell and which tends to make other cells differentiate into that 
same type, then there is a positive feedback direct into the source gradient. Such a 
substance is not a morphogen in the strict Turing sense. It might, however, give 
the differentiation process some partial mathematical analogy to reaction- 
diffusion theory, depending upon how closely the subsequent movements of 
differentiated cells resemble diiFusion. 

Schaller61 (in the same institute as Gierer and Meinhardt) found an oligo- 
peptide hormone, produced by nerve cells of Hydra, which when added to Hydra 
tissue gave it an increased tendency to form ‘heads’, i.e. rings of tentacles. The 
‘head’ contains a higher fraction of nerve cells than the rest of the animal. There 
is certainly a positive feedback loop here, but this substance is not regarded 
(Meinhardt, personal communication) as the morphogen a in equations (28) .  

Glycosaminoglycans (GAGS) are polysaccharides composed of alternating 
units of a sugar acid (e.g. glucuronic acid) and an amino-substituted sugar. They 
are widespread in animals, but are found particularly as constituents of thc extra- 
cellular matrix of connective tissue.62 Hyaluronate ( 1 )  and the chondroitin 

61 H. C .  Schaller, J.  Embrvol. Exp. Morph., 1973, 29, 27 and 39. 
62 J. E. Scott, Chem. Br., 1979, 15, 13 .  

524 



Harrison 

sulphates (2) and (3) are especially prevalent in cartilage. In  the embryogenesis of 
vertebrates, differentiation into cartilage precursors is the first stage in formation of 
the skeleton, determining its complicated geometry. The structure of a limb, for 
example, is controlled mainly by activity in the tip region of a limb bud, in which 

CH,OH 

OH 
\ 

OH 

a mass of primary mesenchyme cells is source material for differentiation towards 
cartilage and other tissues, and is controlled by adjacent structures such as the 
apical ectodermal ridge and zone of polarising activity (Plate 

Urist et al.64 showed that muscle tissue from newborn rats could be made to 
differentiate into cartilage by the influence of bone matrix gelatin, and that this 
change was enhanced by chondroitin sulphate but depressed by hyaluronate. 
Both substances are produced by the differentiated cells, so that there is some 
evidence here for both self-activation and self-inhibition. These authors, however, 
mention Turing’s theory and beiieve that a morphogen is present but that it is not 
to be identified with either of these polysaccharides. They write: ‘Morphogens are 

1 3 ~  L. Wolpert, J. Lewis, and D. Summerbell, in ref. 60, p. 95. 
13* M. S. Urist, Y. Terashima, M. Nakagawa, and C. Stamos, I n  V i m ,  1978, 14, 697. 
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short-lived, low-molecular mass, rapidly diffusable hydrophobic proteins that 
have not yet been isolated, purified, and identified but might be found in and on 
differen tiat ing cell surfaces.’ 

Cyclic adenosine monophosphate (CAMP) (4) is a small molecule best known 
because its production just inside the surface of liver cells is the immediate 

response to an extracellular signal from the hormone epinephrine (adrenaline) 
and the start of a chain of reactions inside the cell, which ends with greatly 
enhanced release of glucose to the blood. 

CyclicAMPalsoappears, however, in themorphogenesis of cellular slime moulds 
(Plate 4). At the end of the stage of independent amoeboid single cells, some of 
these cells send out pulses of cAMP which act as signals to all the others to 
gather into  aggregate^.^^ The aggregates then differentiate into two types of cells, 
which rearrange into a stalk and a mass of spores. It is believed that, during the 
final rearrangement (culmination stage) cAMP may be produced by stalk cells 
and act as a chemotactic signal for the movements of these cells leading to stalk 
formation.66 This is a kind of positive feedback; but on another level, the 
relation of cAMP to certain enzymes (adenylate cyclase, which produces CAMP, 
and phosphodiesterase, which destroys it), there is a possibility of finding a 
morphogen pair X and Y, consisting of a small molecule and a large one, quite 
likely to show the required imbalance of diffusivity. 

C. Growth of Cell Surfaces.-Plant cell morphogenesis (Plates 2 and 3) involves 
expansion in area of both the lipid membrane and the cellulosic cell wall outside 
it. The lipids are neither formed at the surface nor added to it molecule by 

IF, G. Gerisch, D. Hulser, D. Malchow, and U. Wick, Philos. Trans. R .  SOC. London, Ser. B, 
1975, 272, 181. (A paper in a discussion on the physics and chemistry of biological recog- 
nition, which is all relevant to the present topic.) P. C. Newell, Endeavour (new series), 1977. 
1,63. 

Is M. Sussman and R. Brackenbury, Annu. Rev. Plant Physiol., 1976,27, 229. 
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molecule. They are conveyed from the interior of the cell in the form of vesicles 
up to lOOnm in diameter.67 These vesicles carry, as the electron microscope 
indicates, rosette-shaped structures from each of which a cellulose microfibril of a 
definite length grows after incorporation of the vesicle into the cell membrane. 
Thus the amount of cellulose produced goes in lock-step with the amount of 
material added to the membrane. The key to morphogenetic control is therefore, 
to my mind, the control rate of addition of vesicles. This still leaves a very wide 
field, chemically. Movement of vesicles through the interior of the cell is likely to 
be related to cytoplasmic streaming and could be controlled by the cytoskeleton 
of protein microfilaments. On the other hand, it may be that vesicles are always 
present at the surface in excess, and that most of them bounce off the membrane 
but some stick and fuse to it because of chemical differences in the surface of the 
membrane and the vesicles in different regions. One must then look for mor- 
phogens among the substances which act to set up gradients of these surface 
modifiers. The latter could be something as simple as Ca2+, which is known to 
have a strong influence on electrical potentials at membranes and to affect, for 
example, the fusion of the sperm to the egg, and the fusion of neurotransmitter- 
filled vesicles to synaptic membranes in nerve cells. But the surface modifiers 
could also be something as complicated as a glycoprotein. 

In multicellular plants, because of the rigidity of their cell walls and inability of 
the cells to sort out, control of direction of cell division is the primary morpho- 
genetic control in development of branches, leaves, etc. (Plate 7).6* The plane of 
division of a cell is first marked, before anything significant has happened-to the 
geometry of the nucleus, by the appearance of a ‘pre-prophase band’ of micro- 
tubules, girdling the equator which is to be the plane of division.12 This suggests 
that morphogenetic control mechanisms may reside at the cell surface rather than 
the nucleus, and leads me again to look a stage or more back from the micro- 
tubules and to enquire what substances and reactions determine the positions of 
nucleation sites for tubulin polymerisation. Chemicals that control plant growth 
were described in an earlier review in this series.69 They include the cytokinins, 
which are purine and adenine derivatives, and which promote cell division and 
differentiation to the extent that an entire tobacco plant can be grown from a 
pith segment with the aid of 6-benzyloxypurine. Such compounds are promising 
candidates for the name of morphogen. 

In general, structural studies by electron microscopy and other techniques such 
as immunofluorescence are providing extensive and spectacular evidence for the 
occurrence of microtubules and microfilaments in important places during 
development. I am inclined to believe, however, that these structures are mani- 
festations of morphogenetic control, rather than the controllers themselves. But 
they are important as pointers towards the control mechanisms, which will 
probably ultimately be found in the biosynthesis of nucleation sites for these 
macromolecules. Either or both of nucleation-depletion theory and reaction- 

67 L. A. Staehelin, in ref. 37. 
6 a  P. B. Green, Annu. Rev. Plant Physiol., 1980, 31, 51. 
s*R.  L. Wain, Chem. Soc. Rev., 1977, 6, 261. 
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diffusion theory of the Turing type could turn out to be the proper explanation of 
control. 

Note added in proof: A recent discussion of the Royal Society on ‘Theories 
of biological pattern formation’ contains the most recent ,information on 
several of the topics in this review.’* 

Philos. Trans. R .  SOC. London, Ser. B, 1981, 295, 425-617 
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